3.259 \(\int \frac {x^2}{(1+x^2) \sqrt {1+x^4}} \, dx\)

Optimal. Leaf size=70 \[ \frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {x^4+1}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}} \]

[Out]

-1/4*arctan(x*2^(1/2)/(x^4+1)^(1/2))*2^(1/2)+1/4*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticF
(sin(2*arctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(x^4+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1318, 220, 1699, 203} \[ \frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {x^4+1}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{2 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((1 + x^2)*Sqrt[1 + x^4]),x]

[Out]

-ArcTan[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(2*Sqrt[2]) + ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x],
 1/2])/(4*Sqrt[1 + x^4])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1318

Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[d/(2*d*e), Int[1/Sqrt[a + c*x^
4], x], x] - Dist[d/(2*d*e), Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] &
& NeQ[c*d^2 + a*e^2, 0] && PosQ[c/a] && EqQ[c*d^2 - a*e^2, 0]

Rule 1699

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[A, Subst[Int[1/
(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ
[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (1+x^2\right ) \sqrt {1+x^4}} \, dx &=\frac {1}{2} \int \frac {1}{\sqrt {1+x^4}} \, dx-\frac {1}{2} \int \frac {1-x^2}{\left (1+x^2\right ) \sqrt {1+x^4}} \, dx\\ &=\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {1+x^4}}-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1+2 x^2} \, dx,x,\frac {x}{\sqrt {1+x^4}}\right )\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {2} x}{\sqrt {1+x^4}}\right )}{2 \sqrt {2}}+\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{4 \sqrt {1+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 40, normalized size = 0.57 \[ \sqrt [4]{-1} \left (\Pi \left (-i;\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )-F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 + x^2)*Sqrt[1 + x^4]),x]

[Out]

(-1)^(1/4)*(-EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1] + EllipticPi[-I, I*ArcSinh[(-1)^(1/4)*x], -1])

________________________________________________________________________________________

fricas [F]  time = 1.14, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{4} + 1} x^{2}}{x^{6} + x^{4} + x^{2} + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+1)/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 1)*x^2/(x^6 + x^4 + x^2 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+1)/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/(sqrt(x^4 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

maple [C]  time = 0.07, size = 110, normalized size = 1.57 \[ \frac {\sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticF \left (\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) x , i\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}+\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \EllipticPi \left (\left (-1\right )^{\frac {1}{4}} x , i, -\sqrt {-i}\, \left (-1\right )^{\frac {3}{4}}\right )}{\sqrt {x^{4}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^2+1)/(x^4+1)^(1/2),x)

[Out]

1/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticF(x*(1/2*2^(1/2)+1/2*I*2^(
1/2)),I)+(-1)^(3/4)*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticPi((-1)^(1/4)*x,I,(-I)^(1/2)/(-1)^(1
/4))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {x^{4} + 1} {\left (x^{2} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+1)/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/(sqrt(x^4 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2}{\left (x^2+1\right )\,\sqrt {x^4+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((x^2 + 1)*(x^4 + 1)^(1/2)),x)

[Out]

int(x^2/((x^2 + 1)*(x^4 + 1)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\left (x^{2} + 1\right ) \sqrt {x^{4} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x**2+1)/(x**4+1)**(1/2),x)

[Out]

Integral(x**2/((x**2 + 1)*sqrt(x**4 + 1)), x)

________________________________________________________________________________________